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Abstract—Two models of linear thermal regenerator operation are studied using Laplace transform
techniques. It is shown thal the cell model of Lai, Dudukovic and Ramachandran and the trapezoidal rule
discretization of Hill and Willmott are relaled by changes of time scale and parameters. A matnx formalism
is developed for representing transient regenerator operation. The formalism is used to elucidate Lhe
physical interpretation of the equations for the cyclic steady state, and to study heat recovery following
an impulse perturbation to the gas inlet temperature. The ultimate fractional heat recovery from such a
perturbation can be found from the cyclic steady state outlet gas dimensionless lemperature distribution ;
it is bounded by the maximum and minimum values of that distribution.

1. INTRODUCTION

THE THEORY of thermal regenerators has been studied
for more than 70 years [1, 2], but over the last decade
there has still been considerable interest in numerical
methods for solving the basic linear equations for
countercurrent regenerator operation [3-6]. The
reason is that for computer design of a thermal regen-
erator for a particular operation, it may be necessary
to perform a large number of numerical simulations,
and in these circumstances the efficiency of the
numerical simulation is very important. An accurate,
rapid and robust method has been developed by Hill
and Willmott (HW) [5, 6], following the approach
proposed by Razelos [3]. Whereas Razelos uses a
Euler discretization of the governing equations, Hill
and Willmott use a more accurate trapezoidal rule
discretization, and also offer improved methods of
solving the resulting equations for the cyclic steady
state. A slightly different approach was followed by
Lai, Dudukovic and Ramachandran (LDR) (4], who
set up a cell model of a regenerator which they solved
using Laplace transforms. The cell model is a less
accurate discretization of the governing differential
equations.

An alternative method of thermal regenerator
simulation is provided by the Nusselt equations,
which lead to integral equations for the cyclic steady
state [1, 2]. However, for all practical purposes the
integrals must be evaluated numerically, and then, as
was pointed out by Burns [7], there is no advantage
in using integral equations over partial differential
equations.

The present work does not offer 2 new scheme of
calculation. Instead, a comparison is made of the cell
model of LDR and the trapezium rule discretization
of HW. While, in terms of truncation error, HW is

more accurate than LDR, it is shown that the
algebraic structure of the two models is identical, and
that numerical results from the two models can be
related by scaling the dimensionless time vanable and
by modifying parameters. Further, a formalism is
developed which clarifies the algebraic structure of the
two models, in particular the origin and form of the
closed method equations for the cyclic steady state
developed by HW [5]. An example of its use is given,
which 1s relevant to transient regenerator operation.
This is a study of the heat recovery following an
impulse disturbance to the inlet gas temperature of a
regenerator in cyclic steady state. It is shown how
the fractions of the heat from the impulse which are
eventually lost from each end of the regenerator are
related to the cyclic steady state outlet gas temperature
distribution.

2. THE LAPLACE TRANSFORM METHOD

The equations governing linear regenerator oper-
ation are [1, 2]

90 _ ha

pn —W(B‘G) (N
a0 hA
= WSL (©-0). (2)

The usual assumptions have been made that the gas
is in plug flow, that there is no radial heat transfer
and that the accumulation term in the gas thermal
balance can be neglected [1, 2]. Now we define
dimensionless solid and gas temperatures
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NOMENCLATURE
A total heat transfer surface area [m?) Greek symbols
C specific heat of solid [J kg™ '] a, .,y coefficient functions, defined in the
h gas to solid heat transfer coefficient Appendix
Wm K™ At variation in outlet gas temperature
L length of regenerator [m] during a period
M mass of solid packing [kg] € thermal effectiveness
N maximum value of cell or node label n 0 gas temperature [K]
Q. fraction of heat lost from cold end 0. cold reference gas temperature [K]
of regenerator during mth hot 0, hot reference gas temperature [K]
period (C) solid temperature [K]
Q.. total fraction of heat lost from cold end A dimensionless length per cell
of regenerator A dimensionless (reduced) length
S specific heat of gas [J kg~ '] n dimensionless time
L. dimensionless cold inlet gas temperature e dimensionless cold period
L dimensionless hot inlet gas temperature Mh dimensionless hot period
{, dimensionless gas temperature ¢ dimensionless distance coordinate
Lo dimensionless inlet gas temperature I1 dimensionless (reduced) period
£ dimensionless gas outlet temperature T time [s].
during mth hot period
T, dimensionless solid temperature Subscripts
T vector of dimensionless solid c cold period
temperatures h hot period
T™ dimensionless solid temperature n nthnodeorcell O <n< N, or
at the end of the mth cold 1 € n < N, according to scheme).
period
T™" dimensionless solid temperature Superscripts
at the end of the mth hot 0 value at start of period
period m mth peniod
V, dimensionless solid temperature ! derivative
/4 gas mass flow rate [kgs™'] * modified variable
X distance coordinate [m]. - (overbar) Laplace transform.

0—0. 4

) C)]

where 0, and 0. are reference hot and cold tempera-

tures. When the hot and cold blows are each at con-

stant temperature, 8, and 0. can be chosen to be those

constant temperatures, and in that case the hot and

cold gas inlet temperatures are | and 0, respectively.
Further, we define dimensionless time and length :

_ hAT 5
= c 6]
_ hAx ©
T WSL® )

In terms of dimensionless quantities, equations (1)
and (2) become

o1 7
= @
61_T 8
=Tt (8)

The cell model of LDR is considered first. This

model provides a discretization of equations (7) and
(8) based on a physical picture of regenerator oper-
ation. The regenerator is divided into N equal cells,
in each of which the solid is at a uniform temperature
and the gas is well mixed. The cells are labelled by
n=1,2,..., N, and the gas and solid temperatures in
cell n are ¢, and T,. Gas flow is in the direction of
increasing n (for now). The gas inlet temperature is
to. The equation for the rate of change of the solid
temperature in the nth cell is

d7,
dl1 =1,— Tn (9)

and the gas thermal balance gives

Loy — b = A8, —T,). (10)

Here

A=A/N an

where A = h4/WS is the dimensionless (reduced)
length of the regenerator. Equations (9) and (10) are
the cell model discretization of equations (7) and (8).

LDR have solved equations (9) and (10) using
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Laplace transforms with respect to  [4]. The algebraic
equations for the Laplace transforms of the gas and
solid temperatures, f, and T,, are easily solved. The
results have the following general form [4]. The outlet
gas temperature has Laplace transform (s is the trans-
form variable)

N
l-N = ;O(S)E(Ss A+ Z ASTip_ i 1) (S, ;{)T?

i=1

(12)

and the solid temperature in the nth cell has Laplace
transform

Tu = I_O(S)Sdn(xv '1)+ Z )_’(n—i)(sv A)T,O

i=1

(13)

Here T? is the solid temperature in cell n at time
n = 0. The functions «,, f and y, and their Laplace
transforms are given in the Appendix.

The solutions in the time domain are

tv(n) = J; ton—0B(E, A df

+4 Z aw ey (1 AT? (14)

n d
T,(m =L to(n—0)—

a a,{(, A) d+ Z Ve iy (M, NT).

(15)

The form of the equations (12)—(15) is that which
follows from linearity and causality. The outlet gas
temperature depends linearly on the inlet gas tem-
perature and on the initial solid temperature in each
cell. The solid temperature in the nth cell depends
linearly on the inlet gas temperature and the solid
temperature in cells m with m < n. This is the structure
of, for example, the Hausen heat pole method [1].

The trapezium rule discretization of HW is now
considered. The regenerator is divided into (N+1)
nodes, with solid temperatures V,, forn=0,1,...,
N, and with gas temperatures ¢,, forn=1,2,.... N,
and ¢, the inlet gas temperature. The discretization of
equation (7) is equivalent to equation (9):

dv,

— =1V, 16

d" n L ( )
HW use the trapezoidal rule for the discretization of
equation (8), which gives

ln_l(n+l) =g{’(n+l)—V(n+l)+In_Vn}' (17)
It is possible to take the Laplace transform of equa-
tions (16) and (17) and solve for ¢y and V,. The
results are equivalent to those of HW [5, 6], who use a
different transform to solve the equations. However,
a simplification is achieved if instead of the (N+1)
nodal solid temperatures V,, N average solid tem-
peratures are now introduced, defined by
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T.=3(V,+ Vi) (18)

forn=1,2,..., N. Note that the T, values defined
by equation (18) correspond to using temperatures al
points half-way between the nodes. Then using a new

_ time variable

=5 (19

and defining

(20)
leads to

N
Ty = Io(sM)BE*, A0+ Y, A%s* a1 (5%, A9 T?

@n

and
T, = 1p(s*)s*a,(s*, A%) + 2 )Tln—i)(S*'j'*)TP (22)
i=1

where s* is the Laplace transform vanable cor-
responding to n*. Equations (21) and (22) should be
compared to equations (12) and (13); they are the
same, apart from changes in s and 1. The solutions in
the time domain are

K 2 22
win = [ 52 nn-08(2. 2 2 )a

w22
+AZ - ,+.)<2 "A = ,1>T0 23)

n d 20 24
T.(n) = L lo(ﬂ_C)d_Can (ﬁ ﬁ) d¢

" 2n 21
+ ), A ( )TU (29
,.; i \2-172-1

Thus the algebraic structure of LDR and HW is the
same ; quantities are related by changes in the time
scale and changes in parameters.

3. THE CYCLIC STEADY STATE

It is necessary to find the form of these equations
in two special cases. The work that follows will be
phrased in terms of the cell model, but because of
equations (21) and (22), the results will be true, with
the appropriate changes, for HW.

The first case is when hot inlet gas with £, = 1 blows
into the cell with n =1 for a dimensionless time n,, ;
the second is when cold inlet gas with ¢, = 0 blows in
the opposite direction, that is into the cell with n = N,
for a dimensionless time 5. The results for the solid
temperature can be written with remarkable simplicity
by introducing a matrix notation. Define matrices
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r‘./ =%u_n (25)
whose elements are zero when i < j, and vectors
T=(T,..... T)" (26)
2= (a,...., o)’ 27

where the superscript T denotes matrix transpose. If
the solid temperature at the start of the hol blow inlo
cell 1 is T, then the temperature T al the end of the
hot blow 1s, from equation (15),
T=2+I,T (28)
where the subscript h on « and I' denotes both y;, and
7y as arguments. Similarly, if the solid temperature at
the start of the cold blow into cell N is T, then the
temperature T at the end of the cold blow is, from
equation (15), modified to take into account the
changed direction ol the blow
T=CT® (29)
where the subscript ¢ denotes both . and 4. The
matrix I'y is lower triangular and T} is upper tri-
angular ; equations (28) and (29) display the structure
required by linearity and causality. The outlet gas
temperature can now be found from equation (14).

This formalism will now be used (o sel up the equa-
tions for the cyclic steady state under condilions such
that hot gas with r, = | blows into one end of the
regenerator for a time n,, and cold gas with (. =0
blows into the other end of the regenerator for a time
n.. Consider a complete cycle consisting of a cold blow
followed by a hot blow. Let the solid temperature at
the end of the cycle, that is immediately [ollowing a
hot blow. be T°. Then after the following cold blow,
the solid temperature T¢ is given by equation (29):

T =TT (30)

After the subsequent hot blow the solid temperature

T" is given by

T = o, + [T 31
In the cyclic steady state T = T°, and these solid
temperatures can be found by solving the N inhomo-
geneous equations represented by equation (31) [5,
6] : the use of the average solid temperature of equa-
tion (18) has led to N equations, instead of the (N + 1)
equations in HW. The physical meaning of equations
(30) and (31) has been made manifest by the matrix
formalism.

For a particular choice of N, calculations in the two
schemes can be related. The thermal effectiveness in
HW for dimensionless (reduced) length A and dimen-
sionless (reduced) period IT = hAP/MC, where P is
the period, is the same as that in LDR for dimen-
sionless length 2A/(2 — (A/N)) and dimensionless per-
iod 2IT/(2— (A/N)).
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F1G. 1. The outlel gas dimensionless temperalure as a func-

lion of dimensionless time during the first three hot periods,

labelled H1, H2 and H3. The solid line shows the response

when the regenerator starls cold, T = 0, the hol inlet gas

lemperature 1s f, = | and the cold inlet gas temperalure is

1. = 0. The dashed line is the same response delayed by one
cycle.

4. HEAT RECOVERY FOLLOWING A
DISTURBANCE

As well as cyclic steady state performance, the tran-
sient behaviour of regeneralor performance has
attracted a great deal of atlention [7-11]. An under-
standing of transient effects is important [or the design
of regeneratlor systems where disturbances, such as
changes in inlel gas lemperalures, occur, so that heat
recovery under such condilions can be estimated. Per-
turbations caused by temporary changes in the inlet
gas temperature of a regenerator operating initially in
a cyclic steady state with constant hot and cold inlet
gas temperatures will be considered. Because of the
linearity of the system., it is sufficient to consider the
effect of the perturbation on an initially cold regen-
erator, which, apart [rom the perturbation, is blown
cold from both ends. In order to distinguish between
the directions of gas Aow, the nomenclature ‘hot per-
10d’ and ‘cold period” will be retained.

A special case, when the inlet temperature is in-
creased by unity [or one complete hot period, can be
dealt with without calculation. The resulting outlet
gas temperature during the hot period is found from
the difference of two contributions. The first con-
tribution is the response to a permanent unit step
increase to the hot inlet gas temperature. The second
contribution is the same response delayed by one
cycle. By superposition, the difference is the response
due to the perturbation. The two contributions are
sketched in Fig. |; their difference is shown by the
hatching. The area of the hatching, divided by #,,
corresponds to the fraction of heat from the per-
turbation which is lost from the cold end of the regen-
erator. The area of the hatching also sums to the area
under the cyclic steady state distribution. That area
divided by #, is the average dimensionless cold outfet
gas temperature, which equals (1 —e,), where &, is the
hot period thermal effectiveness [1, 2].

The special case was a constant change to the inlet
gas temperature for one hot period. When the vari-
ation of the inlet gas temperature during a period is
important, it is necessary to look in more detail. Using
the formalism developed in the previous sections the
following theorem will be proved.

Theorem. Consider an impulse perturbation to the
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inlet gas temperature, d(n—#,). which occurs at
dimensionless time 1, from the start of a hot period.
The fraction of the heat from the impulse which is lost
ffom the cold end of the regenerator is equal to the
dimensionless temperature of the gas leaving the cold
end of the regenerator, in the cyclic steady state, at
time (1, —#,) [rom the start of a hot period.

Corollary. The heat lost from a general perturbation
Lo the hot inlet gas temperature can then be [ound
from the cold outlet cyclic steady state temperature
distribution by convolution.

The calculations are done in two parts. In the first
part, the effects of the impulse perturbation are ana-
lysed. As was stated earlier, because the system is
linear, this can be done by imposing the perturbation
on a regeneralor which is initially cold and which is
blown cold from both ends. The heat lost from one
end of the regenerator during each subsequent cycle
1s then [ound. In the second part of the calculation,
the regenerator starts cold and an ordinary devel-
opment to cyclic steady state is followed.

4.1. Impulse response

To repeat: although, apart from the impulse, the
regenerator is blown cold from both ends, the
nomenclature ‘hot period’ and ‘cold period’ will be
retained. There is a perturbation (5 —n,) to the inlet
temperature in one hot period.

During this hot period, the outlet gas temperature
can be found from equation (14) with 1, = é(n—n,):

Iv(n) = B(n—ne, A4v) forp>n,
tyi) =0

Then the fraction of heat lost in the gas leaving the
cold end of the regenerator is

for n < ng. (32)

0, =L"t~(n> dn=J;h "B A dE

= b —No» An) (33

defining the function b. The solid temperature at the
end of this hot period is, from equation (15)

T = &' (M —Ho, 4n)

where the prime denotes differentiation with respect
to the first argument. The calculation now follows the
process period by period and sums up the heat lost
from the cold end of the regenerator during each hot
period.

The solid temperature at the end of the first cold
period (which follows the hot period that has just been
considered) is, from equation (29)

T' = r;rﬂ'(’?h —o, An)-

(34)

(35

Apart from the impulse, the gas is blown cold from
both ends of the regenerator. The solid temperature
at the end of the (m—1)th cold period, with m = 2, is

TV = [T, )" 2T e (y —1o» 4n)-  (36)
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From this, the gas outlet temperature in the mth hot
period can be found from equation (14); its integral
is the fraction of heat lost during the mth hot period:

N
On =4 z ov_iv 1y (s An)
i= 1

i=

) AT Tl o (1 = ou An)}i: - (37)

4.2. Development of the cyclic steady state

When the regenerator is blown alternately with hot
gas, f, = 1, from one end, and cold gas, . = 0, from
the other, it eventually reaches a steady state inde-
pendent of the initial temperature distobution. For
the present purpose it is useful to start the regenerator
cold and start the hot blow at the beginning of a
period.

The outlet gas temperature at time (4, —#,) {rom
the start of the first hot period can be found [rom
equations (14) and (32):

18" (1 —10) = b1 — 110, A) (38)

which equals Q,. Now the evolution of the system will
be followed in the same way as before, and it will be
found that the difference in outlet temperatures at a
time (1, —n,) from the start of the mth and (m— 1)th
hot periods is Q,,. as given by equation (37).

From equation (28) the solid temperature at the
end of the first hot period is

T =4, (39)

and from equation (24) the solid temperature at the
end of the first cold period is

T'¢ = [Ta,. (40)

The solid temperatures at the end of the (m — 1)th and
(m —2)th cold periods (m = 2) are related by

T(m— 1)he = T(m— 2).c+(r;rrh)|m~ l)rz'ah (41)

where T = 0. The difference between outlet gas tem-
peratures during the mth and (m— 1)th hot periods
can be found using equation (14). Evaluating this
difference at time (n,—#n,) from the start of the hot
period gives

15" (1 —10) — 18 " (70 —10)
N

= Ay Z &n—iv1y(Mh— N0, ih)[(l"fl"h)""’ 2)I—LTC"h]- (42)
i= 1

i=

It will now be proved that the right hand side of
equation (42) equals Q,, given by equation (37). This
can be done by introducing new matrices

Gij =T i 1)+ (43)
The G values have three useful properties :

(1) they are symmetric and thus equal to their own
transpose;

(i) [Ty = G.Gy; (44)
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(iii) for a vector x

N
(rex); = ZI GyX—ivy- 45
The required result follows immediately from these
properties.

The cyclic steady state outlet gas temperature dur-
ing a hot period, %, can, in the same way as for the
special case, as indicated in Fig. 1, be built up as the
sum of increments from period to period. Evaluating
this temperature at time (17, —1,) from the start of a
hot period gives

B —10) = 18 (1 —110)

+ ) [ tn=n0) =15 P (1 —10)).  (46)

m=2

It has been shown that the mth term on the right hand
side of equation (46) is equal to @, so then

lf’:’(’lh—’lo) = Z Qm = Qlol

m=1

CY))

where Q,,, is the total fraction of heat from the impulse
lost from the cold end of the regencrator. Thus the
theorem is proved.

Note that this result is exact for both LDR and
HW, and for an arbitrary number of cells or nodes.
So it will be true as that number tends to infinity,
that is for the solution of equations (7) and (8). A
calculation using a discretization of the governing
differential equations has led to an exact result for the
solutions of the differential equations themselves.

4.3, Examples

A general perturbation in the hot inlet gas tem-
perature can be split into contributions over separate
hot periods, which can be considered separately. A
perturbation in the inlet gas temperature occurring in
a particular hot period, g(7), can be viewed as a lincar
combination of impulses:

k)
g(1) =L o(—0g(0) di. 48)
The fraction of heat from the perturbation which is
lost from the cold end of the regenerator, Q,,, can
then be found from a weighted average of cyclic steady
state outlet gas temperatures:

Qi = J B — g () dL / J g dL. (49)

As a first example, this result will be applied to the
special casc described earlier, of a constant per-
turbation to the hot inlet gas tempcerature lasting for
one cycle. In that case g(n) = 1, and equation (49)
gives Q,, to be the average outlet gas temperaturc
during the hot period, as required by the general argu-
ment for this perturbation, given at the beginning of
Section 4.

As a second example, consider a regenerator with

L. Zuaxg and D. M. Scott
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F1G. 2. The outlet gas dimensionless temperature as a func-
tion of dimensionless time in the cyclic steady state during a
hot period. A, = A, =9, 5, =1, =3.5.

Table 1. Dependence of Aron A
and I from ref. [14]

A 1 At

50 1 0.002

40 20 0.23
5 5 0.61

A, =A. =9 and 5, = 1. = 3.5, numbers typical of a
regenerative burner (see, e.g. refs. [11,-12]). The cyclic
steady state outlet gas temperature during a hot period
is shown in Fig. 2. The thermal cffectiveness is
e =g, =& = 0.802. :

For an impulsc perturbation occurring at the start
of the hot period, g(i7) = (1), the fraction of heat lost
from the cold end of the regenerator is given by the
outlet gas temperature at time § = 1y, i.e. Oy, = 0.347.
Similarly, for an impulse perturbation occurring at
the end of a hot period, g(n7) = (1 — 1), Qior = 0.061.
The fraction of heat lost from a general perturbation
will lie between these two limits. In particular, if the
perturbation is of constant magnitude, O, =
1—&=0.198.

The effect can be appreciable when the outlet gas
temperature varies significantly during a period. For
large dimensionless length A and small dimensionless
period IT, there will be little variation in the outlet gas
temperature during a period; for small A and large
I, there will be a.large variation in the outlet gas
temperature during a period. A detailed study has
been carried out by Heggs et al. [13]). Sample results
on thec variation in outlet gas temperature during a
period At are shown in Table 1.

5. DISCUSSION

Laplace transform techniques have been used to
compare two models of linear regenerator opcration.
It has been shown that the trapezium rule model of
Hill and Willmott and the cell model of Lai, Dudu-
kovic and Ramachandran have the same algebraic
structure. This structure follows from linearity and
causality, and corresponds to that of the Hausen heat
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pole method. The numerical results of HW are related
to those of LDR by a change of the time scale and
changes of parameters.

The formalism developed has been used to elucidate
the physical interpretation of the equations for cyclic
stcady state temperature distribution, and to study
heat recovery following a perturbation in the hot inlet
gas temperature. It has been shown that the fraction
of heat lost from the cold end of the regenecrator
during hot periods is given by a weighted average of
the cyclic steady state outlet gas dimensionless tem-
perature distribution. This fraction is bounded by the
cyclic steady state outlet gas dimensionless tem-
perature at the start and end of a hot period. Equi-
valent results hold for perturbations in the cold inlet
gas temperature.

Further consequences of the algebraic structure of
discretizations of equations (7) and (8) are reported
by Willmott et al. [14]. The application of these tech-
niques to transient regenerator behaviour will be the
subject of future work.
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APPENDIX
The cocflicient functions in equations (12)-(15) are
_ Gy
%D = a7
s+1 Y
B2y = <(1+).)s+1)
~ I+2 _
(s, 2) = s +1 n=0
s+ |
T pset "7

1 =i (2 N\ 1 s
anm,;.):—(H,_)nkgo(H,_)( - )k_ j o e-eitieh 4o
k(N
B2 = (1+)) [6(1)+ Z(H,) (,\)

x (k.{ l)",k—l e—q'(l+i)]
L) =D =0

(l+z’)"“:¢Z ( )(";1)

L
G+

-n(1+4) n= 1.





