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Abstract--Two models of linear thermal regenerator operation are studied using Laplace transform 
techniques. It is shown that the cell model of Lai, Dudukovic and Ramachandran and the trapezoidal rule 
discretization of Hill and Willmott are related by changes of time scale and parameters. A matrix formalism 
is developed for representing transient regenerator operation. The formalism is used to elucidate the 
physical interpretation of the equations for the cyclic steady state, and to study heat recovery following 
an impulse perturbation to the gas inlet temperature. The ultimate fractional heat recovery from such a 
perturbation can be found from the cyclic steady state outlet gas dimensionless temperature distribution ; 

it is bounded by the maximum and minimum values of that distribution. 

1. I N T R O D U C T I O N  

THE THEORY Of thermal regenerators has been studied 
for more than 70 years [1, 2], but over the last decade 
there has still been considerable interest in numerical 
methods for solving the basic linear equations for 
countercurrent  regenerator operation [3-6]_ The 
reason is that for computer  design of  a thermal regen- 
erator for a particular operation, it may be necessary 
to perform a large number of  numerical simulations, 
and in these circumstances the efficiency of  the 
numerical simulation is very important.  An accurate, 
rapid and robust method has been developed by Hill 
and Willmott  (HW) [5, 6], following the approach 
proposed by Razelos [3]. Whereas Razelos uses a 
Euler discretization of  the governing equations, Hill 
and Willmott  use a more accurate trapezoidal rule 
discretization, and also offer improved methods of  
solving the resulting equations for the cyclic steady 
state. A slightly different approach was followed by 
Lai, Dudukovic  and Ramachandran (LDR) [4], who 
set up a cell model of  a regenerator which they solved 
using Laplace transforms. The cell model is a less 
accurate discretization of  the governing differential 
equations. 

An alternative method of  thermal regenerator 
simulation is provided by the Nusselt equations, 
which lead to integral equations for the cyclic steady 
state [1, 2]. However,  for all practical purposes the 
integrals must be evaluated numerically, and then, as 
was pointed out by Burns [7], there is no advantage 
in using integral equations over partial differential 
equations. 

The present work does not offer a new scheme of  
calculation_ Instead, a comparison is made of  the cell 
model of  L D R  and the trapezium rule discretization 
of  HW. While, in terms of  truncation error, HW is 

more accurate than LDR,  it is shown that the 
algebraic structure of  the two models is identical, and 
that numerical results from the two models can be 
related by scaling the dimensionless time variable and 
by modifying parameters. Further, a formalism is 
developed which clarifies the algebraic structure of  the 
two models, in particular the origin and form of  the 
closed method equations for the cyclic steady state 
developed by HW [5]. An example of  its use is given, 
which is relevant to transient regenerator operation_ 
This is a study of  the heat recovery following an 
impulse disturbance to the inlet gas temperature of  a 
regenerator in cyclic steady state. It is shown how 
the fractions of  the heat from the impulse which are 
eventually lost from each end of  the regenerator are 
related to the cyclic steady state outlet gas temperature 
distribution. 

2. THE LAPLACE T R A N S F O R M  M E T H O D  

The equations governing linear regenerator oper- 
ation are [1, 2] 

019 hA 
= MC(0--19) (I) 

O0 hA 
- -  ( 1 9 -  0)_ (2)  

O x -  WSL 

The usual assumptions have been made that the gas 
is in plug flow, that there is no radial heat transfer 
and that the accumulation term in the gas thermal 
balance can be neglected [1, 2]_ Now we define 
dimensionless solid and gas temperatures 

19  - -  0 c 
T - (3) 

O h - - 0  c 
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N O M E N C L A T U R E  

A total heat transfer surface area [m 2] 
C specific heat of solid [J kg-  '] 
h gas to solid heat transfer coefficient 

[ W m  2 K - I ]  

L length of regenerator [m] 
M mass of solid packing [kg] 
N maximum value of cell or node label n 
Q,, fraction of heat lost from cold end 

of regenerator during ruth hot 
period 

Q,o, total fraction of heat lost from cold end 
of regenerator 

S specific heat of gas [J kg-  ~] 
t~ dimensionless cold inlet gas temperature 
I h dimensionless hot inlet gas temperature 
t,, dimensionless gas temperature 
to dimensionless inlet gas temperature 
t~ "'h) dimensionless gas outlet temperature 

during ruth hot period 
T, dimensionless solid temperature 
T vector of dimensionless solid 

temperatures 
T ' ~  dimensionless solid temperature 

at the end of the rnth cold 
period 

T "'h dimensionless solid temperature 
at the end of the ruth hot 
period 

Vo dimensionless solid temperature 
W gas mass flow rate [kg s-~] 
x distance coordinate [m]. 

Greek symbols 
~', fl, 7 coefficient functions, defined in the 

At 

£ 

0 
0c 
Oh 
0 
2 
A 
q 
qc 

qh 

n 
T 

Appendix 
variation in outlet gas temperature 
during a period 
thermal effectiveness 
gas temperature [K] 
cold reference gas temperature [K] 
hot reference gas temperature [K] 
solid temperature [K] 
dimensionless length per cell 
dimensionless (reduced) length 
dimensionless time 
dimensionless cold period 
dimensionless hot period 
dimensionless distance coordinate 
dimensionless (reduced) period 
time [s]. 

Subscripts 
c cold period 
h hot period 
n nth node or cell (0 ~< n ~< N, or 

1 ~ n ~< N, according to scheme). 

Superscripts 
0 value at start of  period 
rn mth period 
' derivative 
* modified variable 
- (overbar) Laplace transform. 

0 m 0c  
t - (4) 

0h-0c  

where Oh and 0c are reference hot and cold tempera- 
tures. When the hot and cold blows are each at con- 
stant temperature, Oh and 0c can be chosen to be those 
constant  temperatures, and in that case the hot and 
cold gas inlet temperatures are 1 and 0, respectively. 
Further, we define dimensionless time and length : 

h A y  
(5) rl - M C  

h A x  

= W S L  (6) 

In terms of dimensionless quantities, equations (1) 
and (2) become 

aT  
- -  = t -  T ( 7 )  aq 

at 
- -  = T - -  t .  ( 8 )  a~ 

The cell model of LDR is considered first. This 

model provides a discretization of equations (7) and 
(8) based on a physical picture of regenerator oper- 
ation. The regenerator is divided into N equal cells, 
in each of which the solid is at a uniform temperature 
and the gas is well mixed_ The cells are labelled by 
n = 1, 2 , . . . ,  N, and the gas and solid temperatures in 
cell n are t, and 7",_ Gas flow is in the direction of 
increasing n (for now). The gas inlet temperature is 
to. The equation for the rate of change of the solid 
temperature in the nth cell is 

dT. 
- -  = t .  - 7".  ( 9 )  
dq 

and the gas' thermal balance gives 

t(n_ I) -- t, = 2(t. -- T,). (10) 

Here 

= A / N  (1]) 

where A = h A / W S  is the dimensionless (reduced) 
length of the regenerator. Equations (9) and (10) are 
the cell model discretization of equations (7) and (8). 

LDR have solved equations (9) and (10) using 
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Laplace transforms with respect to r/[4]. The algebraic 
equations for the Laplace transforms of the gas and 
solid temperatures, 7,, and 7~,, are easily solved_ The 
results have the following general form [4]. The outlet 
gas temperature has Laplace transform (s is the trans- 
form variable) 

N 

{u = Fo(S)t~(s, 2) + ~ ).Sff,N_,+ ,)(S.).)T ° (12) 
i = 1  

and the solid temperature in the nth cell has Laplace 
transform 

7",, = 7o(S)S~t.(s,).)+ ~" ~,._,}(s,).)T °. (13) 
i = 1  

Here T ° is the solid temperature in cell n at time 
r /=  0. The functions a., fl and ?,, and their Laplace 
transforms are given in the Appendix. 

The solutions in the time domain are 

£ tN(r/) = t0(r/-- ~)fl(t~,).) d~" 

N d 
+ 2  ~ =-~,u ,.+ ,}(t/. ).)T ° (14) 

i =  i d r /  - 

Ii " T.,(r/) = t o ( q - - ~ ) ~ . ( { ,  ) d{+  ~ ?{. ,)(r/.).)T °. 
i = 1  

(15) 

The form of the equations (12)-(15) is that which 
follows from linearity and causality. The outlet gas 
temperature depends linearly on the inlet gas tem- 
perature and on the initial solid temperature in each 
cell. The solid temperature in the nth cell depends 
linearly on the inlet gas temperature and the solid 
temperature in cells m with m ~< n_ This is the structure 
of, for example, the Hausen heat pole method [1]_ 

The trapezium rule discretization of HW is now 
considered. The regenerator is divided into ( N +  1) 
nodes, with solid temperatures V,, for n = 0, 1 , . . . ,  
N, and with gas temperatures t,, for n = 1, 2 . . . . .  N, 
and t o the inlet gas temperature. The discretization of 
equation (7) is equivalent to equation ( 9 )  

dV,, 
- -  = t . -  V, , .  ( 1 6 )  
dr/ 

HW use the trapezoidal rule for the discretization of 
equation (8), which gives 

.t 
t . - t ( . + , } = ~ { t { . + o - V ( . + o + t . - V , ,  }. (17) 

It is possible to take the Laplace transform of equa- 
tions (16) and (17) and solve for tu and V,,. The 
results are equivalent to those of HW [5, 6], who use a 
different transform to solve the equations. However, 
a simplification is achieved if instead of the ( N +  1) 
nodal solid temperatures V., N average solid tem- 
peratures are now introduced, defined by 

T. = ~(V.+ V,._ ,}) (18) 

for n = 1, 2 . . . .  , N. Note that the 7", values defined 
by equation (18) correspond to using temperatures at 
points half-way between the nodes. Then using a new 
time variable 

and defining 

leads to 

21/ 
r/* - ( 1 9 )  

2 - 2  

22 
2* - (20) 

2 - ) .  

N 

/N = i0(s*)/r(s*, ;,*) + ~ ).*s*~{~_,+ ,,(s*, ) .*)r ? 

(21) 

and 

T,, = ?o(S*)S*~,(s*,2*)+ ~ ~,,_,)(s*,2*)T ° (22) 
i - - I  

where s* is the Laplace transform variable cor- 
responding to 17". Equations (21) and (22) should be 
compared to equations (12) and (13); they are the 
same, apart from changes in s and 2. The solutions in 
the time domain are 

2 2 - i )  ¢ 

+) . ,~ ,  dq ~'{u-'+ ') 2 '  2~-~ T° (23) 

T. (r/) f£ d = t0(r / -  ~) ~ ~. ( 2 ~ 2 ,  2~-~)  d~ 

+ Y'. ).,.-i, 2~- 2 , ). r°,. (24) 
i = 1  

Thus the algebraic structure of LDR and HW is the 
same; quantities are related by changes in the time 
scale and changes in parameters. 

3. THE CYCLIC STEADY STATE 

It is necessary to find the form of these equations 
in two special cases_ The work that follows will be 
phrased in terms of the cell model, but because of 
equations (21) and (22), the results wdl be true, with 
the appropriate changes, for HW_ 

The first case is when hot inlet gas with th = 1 blows 
into the cell with n = I for a dimensionless time r/h ; 
the second is when cold inlet gas with tc = 0 blows in 
the opposite direction, that is into the cell with n = N, 
for a dimensionless time r/c. The results for the solid 
temperature can be written with remarkable simplicity 
by introducing a matrix notation. Define matrices 
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F,., = 7~, /I (25) 

whose elements are zero when i <./, and vectors 

T = (Ti . . . . .  T.v) T (26) 

= (~l . . . . .  ~ . )T  (27) 

where the superscript T denotes matrix transpose. If 
the solid temperature at the start of  the hot blow into 
cell 1 is T c', then the temperature T at the end of  the 
hot blow is, from equation (15), 

T = ~h + Fh T° (28) 

I I 

i t 

I I 

t 
I = j g 

I 

O t j. 
H1 H2 143 T I 

FIG. 1. The outlet gas dimensionless temperature as a func- 
tion of dimensionless time during the first three hot periods, 
labelled H 1, H2 and H3. The solid line shows the response 
when the regenerator starts cold, T = 0, the hot inlet gas 
temperature is th = I and the cold inlet gas temperature is 
t~ = 0. The dashed line is the same response delayed by one 

cycle. 

where the subscript h on ,', and F denotes both rlh and 
2h as arguments.  Similarly, if the solid temperature at 
the start of  the cold blow into cell N is T °, then the 
temperature T at the end of  the cold blow is, from 
equation (15), modified to take into account the 
changed direction of the blow 

T = F~T ° 

where the subscript c denotes both r/~ and 2~. The 
matrix Fh is lower triangular and F[  is upper tri- 
angular ; equations (28) and (29) display the structure 
required by linearity and causality. The outlet gas 
temperature can now be found from equation (14). 

This formalism will now be used to set up the equa- 
tions for the cyclic steady state under conditions such 
that hot gas with t h = I blows into one end of  the 
regenerator for a time tlh, and cold gas with t~ = 0 
blows into the other end of  the regenerator for a time 
r/¢. Consider a complete cycle consisting of  a cold blow 
followed by a hot blow. Let the solid temperature at 
the end of  the cycle, that is immediately following a 
hot blow, be T O . Then after the following cold blow, 
the solid temperature T ¢ is given by equation (29) : 

T ~ = F~T °. 

After the subsequent hot blow the solid temperature 
T h is given by 

T" = ~, + F,I- ' /T °_ 

In the cyclic steady state T ~ = T O , and these solid 
temperatures can be found by solving the N inhomo- 
geneous equations represented by equation (31) [5, 
6] ; the use of  the average solid temperature of  equa- 
tion (18) has led to N equations, instead of  the ( N +  1) 
equations in HW. The physical meaning of  equations 
(30) and (31) has been made manifest by the matrix 
formalism. 

For  a particular choice of  N, calculations in the two 
schemes can be related_ The thermal effectiveness in 
HW for dimensionless (reduced) length A and dimen- 
sionless (reduced) period FI = hAP/MC, where P is 
the period, is the same as that in L D R  for dimen- 
sionless length 2 A / ( 2 -  (A/N)) and dimensionless per- 
iod 21-I/(2-- (A/N)).  

4. H E A T  R E C O V E R Y  F O L L O W I N G  A 

D I S T U R B A N C E  

As well as cyclic steady state performance, the tran- 
sient behaviour of  regenerator performance has 
attracted a great deal of  attention [7-11]. An under- 
standing of  transient effects is important  for the design 

(29) of regenerator systems where disturbances, such as 
changes in inlet gas temperatures, occur, so that heat 
recovery under such conditions can be estimated. Per- 
turbations caused by temporary changes in the inlet 
gas temperature of  a regenerator operating initially in 
a cyclic steady state with constant hot and cold inlet 
gas temperatures will be considered. Because of  the 
linearity of  the system, it is sufficient to consider the 
effect of  the perturbation on an initially cold regen- 
erator, which, apart from the perturbation, is blown 
cold from both ends. In order to distinguish between 
the directions of  gas flow, the nomenclature 'hot  per- 
iod' and 'cold period" will be retained. 

A special case, when the inlet temperature is in- 
creased by unity for one complete hot period, can be 
dealt with without calculation. The resulting outlet 
gas temperature during the hot period is found from 
the difference of  two contributions. The first con- 

(30) tribution is the response to a permanent unit step 
increase to the hot inlet gas temperature. The second 
contribution is the same response delayed by one 
cycle. By superposition, the difference is the response 
due to the perturbation. The two contributions are 

(31) sketched in Fig. I '  their difference is shown by the 
hatching. The area of  the hatching, divided by r/h, 
corresponds to the fraction of  heat from the per- 
turbation which is lost from the cold end o f the  regen- 
erator. The area of  the hatching also sums to the area 
under the cyclic steady state distribution. That  area 
divided by r/, is the average dimensionless cold outlet 
gas temperature, which equals (1 -Eh), where E h is the 
hot period thermal effectiveness [1, 2]. 

The special case was a constant change to the inlet 
gas temperature for one hot period. When the vari- 
ation of  the inlet gas temperature during a period is 
important,  it is necessary to look in more detail. Using 
the formalism developed in the previous sections the 
following theorem will be proved. 

Theorem. Consider an impulse perturbation to the 
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inlet gas temperature, (5(r/-r/o), which occurs at 
dimensionless time q0 from the start of  a hot period. 
The fraction of  the heat from the impulse which is lost 
from the cold end of  the regenerator is equal to the 
dimensionless temperature of  the gas leaving the cold 
end of  the regenerator, in the cyclic steady state, at 
time (r/h - r /u)  from the start of  a hot period. 

Corollary The heat lost from a general perturbation 
to the hot inlet gas temperature can then be found 
from the cold outlet cyclic steady state temperature 
distribution by convolution.  

The calculations are done in two parts. In the first 
part, the effects of  the impulse perturbation are ana- 
lysed. As was stated earlier, because the system is 
linear, this can be done by imposing the perturbation 
on a regenerator which is initially cold and which is 
blown cold from both ends. The heat lost from one 
end of  the regenerator during each subsequent cycle 
is then found. In the second part of  the calculation, 
the regenerator starts cold and an ordinary devel- 
opment  to cyclic steady state is followed. 

4.1. Impulse response 
To repeat:  although, apart from the impulse, the 

regenerator is blown cold from both ends, the 
nomenclature 'hot  period'  and "cold period'  will be 
retained. There is a perturbation 6(r/-  r/o) to the inlet 
temperature in one hot period_ 

During this hot period, the outlet gas temperature 
can be found from equation (14) with to = 6(r/-r/o) : 

t~(r/) = 3 ( ' 7 -  r/o, 2h) for ,7 > '70 

t,v(q) = 0 for ,7 < r/o- (32) 

Then the fraction of  heat lost in the gas leaving the 
cold end of  the regenerator is 

IirK IoPh '10 
Q. = IN(r~ ) dr/ = 3((, ;+~) d(  

(33) b(r/h - - r / 0 ,  J'h) 

defining the function b_ The solid temperature at the 
end of  this hot period is, from equation (15) 

TJ"  = ~'(r/h - r /0 ,  2h) (34) 

where the prime denotes differentiation with respect 
to the first argument. The calculation now follows the 
process period by period and sums up the heat lost 
from the cold end of  the regenerator during each hot 
period. 

The solid temperature at the end of  the first cold 
period (which follows the hot  period that has just been 
considered) is, from equation (29) 

T ''~ = F~a'(r/h --r/0, 2,)_ (35) 

Apart  from the impulse, the gas is blown cold from 
both ends of  the regenerator. The solid temperature 
at the end of  the ( m - l ) t h  cold period, with m >/2, is 

T~,,-u.c = [FVF~],,,- 2) F~ct,(r/h__r/0,2h). (36) 

From this, the gas outlet temperature in the ruth hot 
period can be found from equation (14) ; its integral 
is the fraction of  heat lost during the ruth hot period : 

N 

Qm = J-h E 0~( N i+ I)(r/h, ~h) 
i=1 

× { [ r~ r j " ' - -~ r /~ ' ( r / , - r / o ,~ , )} , .  (37) 

4.2. Development of  the o'clic steady state 
When the regenerator is blown alternately with hot 

gas, th = 1, from one end, and cold gas, t, = 0, from 
the other, it eventually reaches a steady state inde- 
pendent of  the initial temperature distribution_ For  
the present purpose it is useful to start the regenerator 
cold and start the hot blow at the beginning of  a 
period. 

The outlet gas temperature at time (Oh-r/0) from 
the start of  the first hot period can be found from 
equations (14) and (32): 

(I,h) t,v (r/h--r/o) = b(r/h--r/o,2,) (38) 

which equals Q..  Now the evolution of  the system will 
be followed in the same way as before, and it will be 
found that the difference in outlet temperatures at a 
time (r/h-r/o) from the start of  the ruth and ( m -  l)th 
hot periods is Q,,, as given by equation (37). 

From equation (28) the solid temperature at the 
end of  the first hot period is 

T"h = ~(h (39) 

and from equation (24) the solid temperature at the 
end of  the first cold period is 

T"C = Forth. (40) 

The solid temperatures at the end of  the ( m -  l )th and 
( m - 2 ) t h  cold periods (m >/2) are related by 

T '" ' -  "~ = T ' '  ~-)c+(Y~rFh)t'-2JF/a, (41) 

where T °'~ = 0. The difference between outlet gas tem- 
peratures during the ruth and ( m - l ) t h  hot periods 
can be found using equation (14). Evaluating this 
difference at time (qh-qo)  from the start of  the hot 
period gives 

t~""h) (r/, -- r/0) -- t~'-  I 'h)(r /h - -  r /0)  

N 

= ;t, ~ Ct~N_i+,)(r/,--r/o,),,)[(FV~Fh) ("' -~)F~V~h]. (42) 
i = l  

It will now be proved that the right hand side of  
equation (42) equals Q,. given by equation (37). This 
can be done by introducing new matrices 

Gij = r(iv i+ t)j. (43) 

The G values have three useful properties : 

(i) they are symmetric and thus equal to their own 
transpose ; 

(ii) F~VFh = GcGh ; (44) 








